CH9143 中文手册 1 http://wch.cn

BLE/UART/USB 三通芯片 CH9143

手册 版本: 1B http://wch.cn

1、概述

CH9143 是一款 BLE/UART/USB 三通芯片,实现蓝牙、USB 接口和串口接口之间数据互传。蓝牙支持主机模式、从机模式和主从一体模式,从机模式和主从一体下可对蓝牙通讯以及参数进行配置,支持 BLE4. 2。串口支持 AT 指令配置,支持 MODEM 联络信号,最高波特率 1Mbps。同时可实现计算机 USB接口、串口和蓝牙之间联机调试或数据监控。

USB 和 BLE 虚拟化串口技术, 电脑端提供虚拟串口驱动, 屏蔽蓝牙和 USB 底层技术细节, 无需二次开发, 即连即用, 兼容常规串口应用程序和串口调试工具, 快速实现三路"串口"相互传输。

下图为 CH9143 一些应用方案框图:

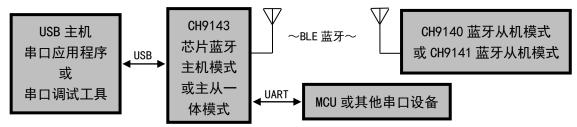


图 1 CH9143 的 USB 接口与其他蓝牙从机或串口设备进行串口通讯框图

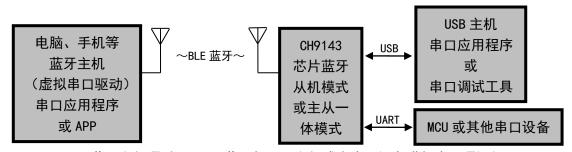


图 2 蓝牙主机通过 CH9143 蓝牙与 USB 主机或者串口设备进行串口通讯框图

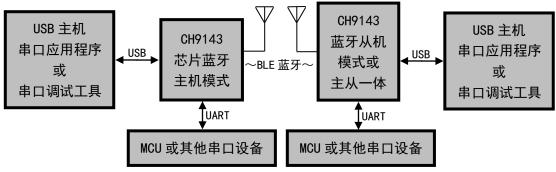
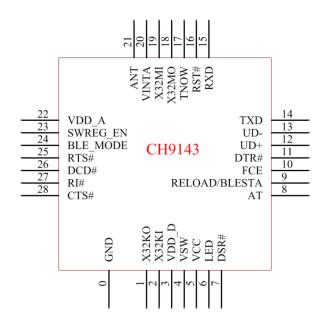


图 3 两端 USB 主机使用 CH9143 蓝牙主从连接进行串口通讯框图

2、特点


- 蓝牙、USB接口、串口三接口数据互传。
- 蓝牙支持从机模式、主机模式和主从一体模式。
- 提供电脑端 USB 和蓝牙虚拟串口驱动。

- 兼容已有串口软件和工具,无需二次开发。
- 支持 Windows/Linux/Android/iOS 等系统蓝牙主机连接。
- 两种串口驱动程序模式:厂商驱动程序模式和免安装的 USB-CDC 驱动程序模式。
- 蓝牙传输距离 100m。
- 蓝牙发送功率 8 档可调。
- 支持 3.3V 和 2.5V 工作电压。
- 支持蓝牙传输配置, 串口 AT 指令配置。
- 异步串口最高通讯波特率 1Mbps。
- 串口支持 MODEM 联络信号 RTS、DTR、DCD、RI、DSR、CTS。
- 串口支持 5、6、7 或 8 个数据位以及 1 或 2 个停止位。
- 串口支持奇、偶、无校验、空白 0、标志 1 等校验方式。
- 全速 USB 设备接口, 兼容 USB V2.0。
- 32K 时钟源可选外部晶振。
- QFN28_4X4 封装。

3、应用领域

- MCU/DSP/嵌入式系统。
- 工业仪器仪表。
- 智能家居。
- USB、串口无线延长。

4、封装

封装形式	塑体宽度	引脚间距		封装说明	订货型号
QFN28	4*4mm	0. 4mm	15.7mil	方形无引线 28 脚	CH9143

5、引脚

引脚号	引脚名称	类型	引脚说明		
0	GND	Р	电源地		
1	X32K0	Α	低频振荡器的反相输出端		
2	X32K1	Α	低频振荡器的反相输入端		
3	VDD_D	Р	芯片内部电源输入,需外接 2. 2uF 退耦电容		
4	VSW	Р	内部 DC-DC 电源开关输出与 VDD_D、VDD_A 连接		
5	VCC	Р	芯片电源输入,需外接 2. 2uF 退耦电容		
6	LED	0	芯片状态和数据收发指示输出引脚,低电平有效		
7	DSR#	ı	UART 的 MODEM 输入信号,数据装置就绪		
8	AT	1	AT 透传功能切换引脚:		
Ö	AI	I	低电平: AT 模式; 高电平: 透传模式		
			芯片上电时为 RELOAD 恢复出厂设置功能输入引脚,		
9	RELOAD	1/0	检测到连续2秒低电平后恢复出厂设置;		
7	/BLESTA	170	芯片上电完成后为 BLESTA 蓝牙连接状态指示信号输出		
			引脚,未连接输出低电平,连接输出高电平。		
10	FCE	I	CTS/RTS流控使能,低电平有效,内置上拉电阻		
11	DTR#	0	UART 的 MODEM 输出信号,数据终端就绪		
12	UD+	USB 信号	USB 总线的 D+数据线		
13	UD-	USB 信号	USB 总线的 D-数据线		
14	TXD	0	串口发送引脚		
15	RXD	1	串口接收引脚		
16	RST#	I	芯片复位引脚,低电平有效		
17	TNOW	0	串口发送数据状态引脚,高电平有效		
18	X32M0	Α	高频振荡器反相输出端		
19	X32M1	Α	高频振荡器反相输入端		
20	VINTA	Р	内部模拟电路电源节点,需外接 2. 2uF 退耦电容		
21	ANT	Α	RF 射频信号输入输出		
22	VDD_A	Р	芯片内部电源输入,需外接 0. 1uF 退耦电容		
23	SWREG_EN	1	内部 DC-DC 电源使能,低电平开启,内置上拉电阻		
24	DIE MODE	1	蓝牙模式选择,内置上拉电阻		
24	BLE_MODE		低电平: 从机模式; 高电平: 主从一体模式		
25	RTS#	0	UART 的 MODEM 联络输出信号,请求发送,低电平有效		
26	DCD#	I	UART 的 MODEM 输入信号,数据载波检测		
27	RI#	I	UART 的 MODEM 输入信号,振铃指示		
28	CTS#	I	UART 的 MODEM 联络输入信号,清除发送,低电平有效		

注: P: 电源引脚, A: 模拟引脚, I: 输入引脚, O: 输出引脚

6、功能说明

6.1 从机模式

从机模式下芯片会发送固定广播数据,默认广播名称 "CH9143BLE2U",广播间隔 100ms。从机支持四种基本蓝牙服务,其中透传服务 UUID 为 0xFFF0。

通讯的 UUID 说明参考下面表格。

UUID	属性	说明			
0xFFF1 通知		串口接收数据将通过该通道发送给主机,主机需要开启通知,			
UXFFFI	地 和	数据会以 MTU 大小封包,超过的将会被芯片分包发送。			
0xFFF2	只写	主机发送数据通道,发送数据将会在串口发送出去。			
0xFFF3	读、写	配置通道,保留。			

6.2 主从一体模式

主从一体模式为蓝牙主机与从机同时工作,当其中某一角色与其它蓝牙建立连接时,则会停止另一角色。需要注意的是,CH9143 芯片作为蓝牙主机角色,仅能与我司其他蓝牙芯片建立连接。配对方法详见 6.3 智能配对功能。

6.3 智能配对功能

当 CH9143 芯片处于主从一体模式时, 无需通过 AT 命令输入 MAC 地址即可与指定 CH914x 芯片建立配对, 配对成功后二者建立绑定关系, 再次连接时无需重新配对。其配对流程如下:

- 1) CH9143 芯片处于主从一体模式, CH9140/CH9143 芯片处于从机模式或者主从一体模式;
- 2) 欲建立配对双方在 3s 内完成上电;
- 3) 指示灯闪烁 3 下后常亮, 配对成功。

若需要重新建立配对需要重新经过配对流程,区别在于步骤3指示灯会快速闪烁,此时将任意端重新上电则可重新建立配对。

6.4 数据传输功能

CH9143 串口、USB 和蓝牙三接口数据互传,任意接口接收到数据都会发送至其他接口。

串口接口使用异步串口,默认出厂 115200bit/s 波特率,8 位数据位,1 位停止位,无检验以及流控开启。USB 接口为 USB2.0 全速设备,通过模拟串口设备与 PC 通信,兼容常用串口软件。

串口接口可进行 AT 配置,将 AT 脚拉至低电平可进入 AT 模式。进行 AT 配置时建议保证数据传输结束,进 AT 配置时,当前接收到的透传数据没有保存会丢失,已经保存到接收缓存区的数据会在退出 AT 模式时继续发送。蓝牙接收到数据是会直接发送给其他接口,数据不会暂存,蓝牙数据多的时候会等待发送,如果当前已经进入 AT 模式,蓝牙接收到的数据直接丢弃。

6.5 指示灯功能

指示灯状态说明表

序号	状态	说明		
1	上电后单次快闪 3 下	当前处于从机模式		
2	上电后双次快闪 3 下	当前处于主从一体模式		
3	500ms 间隔慢闪	当前处于广播状态		
4	常亮	当前处于连接状态		
5	连接状态快闪 当前正在数据传输			
6	配对过程中快闪 已与其他设备建立配对,需重新上电完成配对			

6.6 外部 32K 自动检测功能

CH9143 芯片支持自动检测外部 32K 晶体,若芯片外围不接 32K 晶体则使用内部 32K 时钟,否则使用外部 32K 晶体配合芯片内部的时钟振荡器提供输入时钟。

7、AT 指令集

7.1 AT 基本格式

AT 模式下芯片作为串口从设备,与芯片相连的主控(主机)为串口主设备,AT 命令由主机发送,芯片给出响应。

主机发送基本格式:

说明:基本格式是大部分命令码,部分命令有所区别,具体见下面的命令集。其中{CR} {LF} 对应的是字符格式定义的"\r""\n",十六进制为: 0x0D, 0x0A 即 ASCII 中的回车符和换行符,命令中 {CR} {LF} 作为一个分隔符和结束符使用。

芯片返回基本格式:

返回参数格式: <参数>< {CR} {LF} >< 0K>< {CR} {LF} >

正确状态返回: <0K><{CR} {LF}>

错误状态返回: < {CR} {LF} > < 错误码> < {CR} {LF} >

说明:错误码是两个 ASCII 字符组成的一个 HEX 形式,如错误码为字符 "01"即表示十六进制的 0x01。目前的错误码及表示的含义如下表所示:

错误码	含义			
01	缓存错误: 当前芯片没有缓存来进行应答, 可以稍后重试。			
02	参数错误:发送的 AT 指令部分参数不符合规范,注意芯片不会对所有参数进行判定需			
	要外部保证基本的正确性。			
03	命令不支持:命令在当前模式下不支持,比如在广播模式下发送连接命令等			
04	命令不可执行:命令暂时不能执行,可以稍后重试,一般是没有足够的缓存处理这次			
	命令,芯片在忙。			

7.2 串口配置命令集

序号	指令				
,, ,					
1	AT AT 模式测试				
2	AT+MAC 查询本地 MAC 地址				
3	AT+CCADD 查询当前连接 MAC 地址				
4	AT+CONNINTER	AT+CONNINTER 连接间隔设置			
5	AT+TPL	AT+TPL 查询/设置发射功率			
6	AT+UART	查询/设置串口参数			
7	AT+LSICALI	内部 32K 时钟校准设置			
8	AT+RFCAL I	蓝牙 RF 校准设置			

1. AT 模式测试

指令: AT... {CR} {LF}

说明:检测芯片是否处于 AT 模式, 若处于 AT 模式后发送该命令会给出响应。

返回: OK {CR} {LF}

例: 主机发送: AT... {CR} {LF} 芯片应答: OK {CR} {LF}

2. MAC 地址

查询指令: AT+MAC? {CR} {LF}

说明:读取芯片的蓝牙 MAC 地址,返回的参数格式 xx:xx:xx:xx:xx, MAC 为小端格式即低字节在前,不支持设置 MAC。

返回:蓝牙 MAC 地址

例: 主机发送: AT+MAC? {CR} {LF} 芯片返回: 05:DF:39:4C:99:B4 {CR} {LF} OK {CR} {LF}

设置指令: AT+MAC=xx:xx:xx:xx:xx {CR} {LF}, 参数以小端格式填入。

说明: MAC 参数不建议修改,修改时,芯片不会对参数的合法性进行验证。该参数在下一次上电或复位生效。

例: 主机发送: AT+MAC=05:DF:39:4C:99:B4 {CR} {LF} 芯片应答: OK {CR} {LF}

3. 获取当前连接 MAC 地址

指令: AT+CCADD? {CR} {LF}

说明: 获取当前与芯片连接的 MAC 地址, MAC 为小端格式即低字节在前, 没有连接则返回空的 MAC 地址。

返回:连接的 MAC 地址。

例: 主机发送: AT+CCADD? {CR} {LF} 芯片返回: 05:DF:39:40:99:B4 {CR} {LF} 0K {CR} {LF}

4. 连接间隔设置 AT+CONNINTER

查询指令: AT+CONNINTER? {CR} {LF}

说明:查询当前芯片的连接间隔参数,返回是一个区间数值,分别对应最小值和最大值,在连接时蓝牙协议会协商一个通讯的时间,如果参数不满足芯片将会发起重新协商。数值单位为 1. 25mS。

例: 主机发送: AT+CONNINTER? {CR} {LF} 芯片返回: 6-16 {CR} {LF} OK {CR} {LF}

设置指令: AT+CONNINTER=<参数 1>-<参数 2>{CR} {LF}

说明:设置连接间隔参数,参数范围需要满足蓝牙协议的要求,同时设置的数值不应超过65535。

例:主机发送: AT+CONNINTER=6-160 {CR} {LF} 芯片返回: OK {CR} {LF}

5. 发射功率

查询指令: AT+TPL? {CR} {LF}

说明:查询当前蓝牙发送功率。

返回: 功率等级。

例: 主机发送: AT+TPL? {CR} {LF} 芯片返回: O {CR} {LF} OK {CR} {LF}

设置指令: AT+TPL=<x>{CR} {LF}

说明:设置蓝牙发射功率,x 支持的参数:0(0DB)、1(1DB)、2(2DB)、3(3DB)、4(-3DB)、5(-8DB)、6(-14DB)、7(-20DB),其他的参数不支持,设置参数会保存,并在下一次重启时生效。

例: 主机发送: AT+TPL=1 {CR} {LF} 芯片应答: OK {CR} {LF}

6. 串口设置

获取指令: AT+UART? {CR} {LF}

说明:返回当前的串口参数配置。

返回: <波特率>, <数据位>, <停止位>, <校验位>, <超时时间>{CR} {LF}

例: 主机发送: AT+UART? {CR} {LF} 芯片返回: 115200, 8, 1, 1, 50 {CR} {LF} OK {CR} {LF}

设置指令: AT+UART=<波特率>, <数据位>, <停止位>, <校验位>, <超时时间>{CR} {LF}

说明:该命令设置串口参数,其中波特率支持参数:9600bit/s、19200bit/s、38400bit/s、57600bit/s、115200bit/s、1000000bit/s;数据位支持参数:8、9;停止位支持的参数:1、2;校验位支持的参数:0(无校验)、1(奇校验)、2(偶校验);超时时间是透传模式下的数据超时时间,单位为ms。发送完该命令,芯片将保存该设置的参数并返回应答,5mS 后将按该配置的参数重新初始化串口。

例: 主机发送: AT+UART=115200, 8, 1, 0, 50 {CR} {LF} 芯片应答: OK {CR} {LF}

7. 内部 32K 时钟校准设置 AT+LSICALI

查询指令: AT+LSICALI? {CR} {LF}

说明: 芯片返回当前内部 32K 时钟校准参数, 有三个参数域, 中间使用逗号隔开, 参数格式定义: 〈校准模式〉, 〈温度差阈值〉, 〈定时时间〉{CR} {LF}。其中校准模式值定义: 0:关闭校准, 1:采用定时方式校准, 2:采用温度差校准;温度差阈值:设定的值为温差变化差,该值设置后会在采用温度差

方式校准时使用; 定时时间: 以 ms 为单位, 设置两种校准方式定时时间。

例: 主机发送: AT+LSICALI? {CR} {LF} 芯片返回: 2, 7, 5000 {CR} {LF} 0K {CR} {LF}

设置指令: AT+LSICALI=<校准模式>,<温度差阈值>,<定时时间>{CR} {LF}

说明:设置当前 LSI 时钟的校准模式,参数定义参考查询指令。

例: 主机发送: AT+LSICALI=2, 10, 10000 {CR} {LF} 芯片返回: OK {CR} {LF}

8. RF 校准设置 AT+RFCALI

查询指令: AT+RFCALI? {CR} {LF}

说明: 芯片返回当前 RF 校准参数,有三个参数域,中间使用逗号隔开,参数格式定义:〈校准模式〉,〈温度差阈值〉,〈定时时间〉{CR} {LF}。其中校准模式值定义:0:关闭校准,1:采用定时方式校准,2:采用温度差校准;温度差阈值:设定的值为温差变化差,该值设置后会在采用温度差方式校准时使用;定时时间:以 ms 为单位,设置两种校准方式定时时间。两个设置校准命令格式一致。

例: 主机发送: AT+RFCALI? {CR} {LF} 芯片返回: 2,7,5000 {CR} {LF} OK {CR} {LF}

设置指令: AT+RFCALI=<校准模式>,<温度差阈值>,<定时时间>{CR} {LF}

说明:设置当前 RF 校准模式,参数定义参考查询指令。

例: 主机发送: AT+RFCALI=2, 10, 10000 {CR} {LF} 芯片返回: OK {CR} {LF}

8、参数

8.1 绝对最大值

临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏。

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	ပ
TS	存储时的环境温度	-40	105	°C
VCC	系统电源电压	-0. 4	3. 9	٧
VIO	输入或者输出引脚上的电压	-0. 4	VCC+0. 4	٧

8.2 电气参数

名称	参数说明	最小值	典型值	最大值	单位
VCC	电源电压	2. 5	3. 3	3. 6	٧
VIL	低电平输入电压	0		0. 9	٧
VIH	高电平输入电压	2. 0		VCC	٧
VOL	低电平输出电压	0	0.3	0. 4	٧
VOH	高电平输出电压	VCC-0. 4	VCC-0. 3	VCC	٧
IUP	内置上拉电阻的输入端的输入电流	25	60	90	uA